Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system

نویسندگان

  • Yingda Cheng
  • Andrew J. Christlieb
  • Xinghui Zhong
چکیده

In this paper, we generalize the idea in our previous work for the Vlasov-Ampère (VA) system [8] and develop energy-conserving discontinuous Galerkin (DG) methods for the Vlasov-Maxwell (VM) system. The VM system is a fundamental model in the simulation of collisionless magnetized plasmas. Compared to [8], additional care needs to be taken for both the temporal and spatial discretizations to achieve similar type of conservation when the magnetic field is no longer negligible. Our proposed schemes conserve the total particle number and the total energy at the same time, and therefore can obtain accurate, yet physically relevant solutions. The main components of our methods include second order and above, explicit or implicit energy-conserving temporal discretizations, and DG methods for Vlasov and Maxwell’s equations with carefully chosen numerical fluxes. Benchmark numerical tests such as the streaming Weibel instability are provided to validate the accuracy and conservation of the schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study of the two-species Vlasov-Ampère system: Energy-conserving schemes and the current-driven ion-acoustic instability

In this paper, we propose energy-conserving Eulerian solvers for the two-species Vlasov-Ampère (VA) system and apply the methods to simulate current-driven ionacoustic instability. The algorithm is generalized from our previous work for the singlespecies VA system [9] and Vlasov-Maxwell (VM) system [8]. The main feature of the schemes is their ability to preserve the total particle number and t...

متن کامل

Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations

Discontinuous Galerkin methods are developed for solving the Vlasov–Maxwell system, methods that are designed to be systematically as accurate as one wants with provable conservation of mass and possibly total energy. Such properties in general are hard to achieve within other numerical method frameworks for simulating the Vlasov–Maxwell system. The proposed scheme employs discontinuous Galerki...

متن کامل

Discontinuous Galerkin Methods for Vlasov-maxwell Equations

In this paper, we propose to use discontinuous Galerkin methods to solve the Vlasov-Maxwell system. Those methods are chosen because they can be designed systematically as accurate as one wants, meanwhile with provable conservation of mass and possibly also of the total energy. Such property in general is hard to achieve within other numerical method frameworks to simulate the Vlasov-Maxwell sy...

متن کامل

Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System

The relativistic Vlasov-Maxwell (RVM) system is a kinetic model that describes the dynamics of plasma when the charged particles move in the relativistic regime and their collisions are not important. In this paper, we formulate and investigate discontinuous Galerkin (DG) methods to solve the RVM system. When standard piecewise polynomial functions are used to define trial and test spaces, the ...

متن کامل

Energy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system

We propose a new, energy conserving, spectral element, discontinuous Galerkin method for the approximation of the Vlasov–Poisson system in arbitrary dimension, using Cartesian grids. The method is derived from the one proposed in [ACS12], with two modifications: energy conservation is obtained by a suitable projection operator acting on the solution of the Poisson problem, rather than by solvin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 279  شماره 

صفحات  -

تاریخ انتشار 2014